Different Roles for Homologous Interneurons in Species Exhibiting Similar Rhythmic Behaviors

نویسندگان

  • Akira Sakurai
  • James M. Newcomb
  • Joshua L. Lillvis
  • Paul S. Katz
چکیده

It is often assumed that similar behaviors in related species are produced by similar neural mechanisms. To test this, we examined the neuronal basis of a simple swimming behavior in two nudibranchs (Mollusca, Opisthobranchia), Melibe leonina and Dendronotus iris. The side-to-side swimming movements of Dendronotus [1] strongly resemble those of Melibe [2, 3]. In Melibe, it was previously shown that the central pattern generator (CPG) for swimming is composed of two bilaterally symmetric pairs of identified interneurons, swim interneuron 1 (Si1) and swim interneuron 2 (Si2), which are electrically coupled ipsilaterally and mutually inhibit both contralateral counterparts [2, 4]. We identified homologs of Si1 and Si2 in Dendronotus. (Henceforth, homologous neurons in each species will be distinguished by the subscripts (Den) and (Mel).) We found that Si2(Den) and Si2(Mel) play similar roles in generating the swim motor pattern. However, unlike Si1(Mel), Si1(Den) was not part of the swim CPG, was not strongly coupled to the ipsilateral Si2(Den), and did not inhibit the contralateral neurons. Thus, species differences exist in the neuronal organization of the swim CPGs despite the similarity of the behaviors. Therefore, similarity in species-typical behavior is not necessarily predictive of common neural mechanisms, even for homologous neurons in closely related species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Synaptic Rewiring Demonstrates that Distinct Neural Circuit Configurations Underlie Homologous Behaviors.

Behavioral homology is often assumed to involve similarity in underlying neuronal mechanisms. Here, we provide a counterexample where homologous behaviors are produced by neurons with different synaptic connectivity. The nudibranch molluscs Melibe leonina and Dendronotus iris exhibit homologous swimming behaviors, consisting of alternating left and right body flexions. The swim central pattern ...

متن کامل

Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia).

How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited n...

متن کامل

Multiple types of control by identified interneurons in a sensory-activated rhythmic motor pattern.

Modulatory interneurons that can drive central pattern generators (CPGs) are considered as good candidates for decision-making roles in rhythmic behaviors. Although the mechanisms by which such neurons activate their target CPGs are known in detail in many systems, their role in the sensory activation of CPG-driven behaviors is poorly understood. In the feeding system of the mollusc Lymnaea, on...

متن کامل

A Comparative Analysis of the Neural Basis for Dorsal-Ventral Swimming in the Nudipleura

Despite having similar brains, related species can display divergent behaviors. Investigating the neural basis of such behavioral divergence can elucidate the neural mechanisms that allow behavioral change and identify neural mechanisms that influence the evolution of behavior. Fewer than three percent of Nudipleura (Mollusca, Opisthobranchia, Gastropoda) species have been documented to swim. H...

متن کامل

Partly shared spinal cord networks for locomotion and scratching.

Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011